A Modified BFGS Formula Using a Trust Region Model for Nonsmooth Convex Minimizations

نویسندگان

  • Zengru Cui
  • Gonglin Yuan
  • Zhou Sheng
  • Wenjie Liu
  • Xiaoliang Wang
  • Xiabin Duan
  • Lixiang Li
چکیده

This paper proposes a modified BFGS formula using a trust region model for solving nonsmooth convex minimizations by using the Moreau-Yosida regularization (smoothing) approach and a new secant equation with a BFGS update formula. Our algorithm uses the function value information and gradient value information to compute the Hessian. The Hessian matrix is updated by the BFGS formula rather than using second-order information of the function, thus decreasing the workload and time involved in the computation. Under suitable conditions, the algorithm converges globally to an optimal solution. Numerical results show that this algorithm can successfully solve nonsmooth unconstrained convex problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Trust Region Method for Nonsmooth Convex Optimization

We propose an iterative method that solves a nonsmooth convex optimization problem by converting the original objective function to a once continuously differentiable function by way of Moreau-Yosida regularization. The proposed method makes use of approximate function and gradient values of the MoreauYosida regularization instead of the corresponding exact values. Under this setting, Fukushima...

متن کامل

Convergence analysis of a modified BFGS method on convex minimizations

A modified BFGS method is proposed for unconstrained optimization. The global convergence and the superlinear convergence of the convex functions are established under suitable assumptions. Numerical results show that this method is interesting.

متن کامل

Nonsmoothness and the Bfgs Method∗

This paper investigates the potential behavior, both good and bad, of the well-known BFGS algorithm for smooth minimization, when applied to nonsmooth functions. We consider three very particular examples. We first present a simple nonsmooth example, illustrating how BFGS (in this case with an exact line search) typically succeeds despite nonsmoothness. We then study, computationally, the behav...

متن کامل

A Quasi-Newton Approach to Nonsmooth Convex Optimization

We extend the well-known BFGS quasiNewton method and its limited-memory variant (LBFGS) to the optimization of nonsmooth convex objectives. This is done in a rigorous fashion by generalizing three components of BFGS to subdifferentials: The local quadratic model, the identification of a descent direction, and the Wolfe line search conditions. We apply the resulting sub(L)BFGS algorithm to L2-re...

متن کامل

BFGS convergence to nonsmooth minimizers of convex functions

The popular BFGS quasi-Newton minimization algorithm under reasonable conditions converges globally on smooth convex functions. This result was proved by Powell in 1976: we consider its implications for functions that are not smooth. In particular, an analogous convergence result holds for functions, like the Euclidean norm, that are nonsmooth at the minimizer.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015